Review of Research Interpretation Techniques

Jeffrey S. Barkin, MD

1. Use of a 2 x 2 grid

- a) sensitivity/specificity
- b) True/False Positives and True/False Negatives\
- c) Errors Type 1 and 2
- d) Alpha, beta
- e) P values
- 2. Risk
 - a) Relative Risk
 - b) Absolute Risk
 - c) Treatment Effects NNT/NNH
- 3. Likelihood of Being Helped or Harmed
- 4. Effect Size

Sensitivity=TP= w wy		The true state of affairs		
Specifical=	,	Drug A is better than drug		Drug A is no better than drug B
Conclusion drawn from a clinical trial	Drug A is better than drug B	TP. Correct	w	Error E
Holli a Clinical Inal	Drug A is no better than drug B	Error	у	Correct

TP = true-positive: FP = false-positive: FN = false-negative; TN = true-negative.

i. Naming the erroneous conclusions from a clinical trial

		The true state of affairs		
		Drug A is better than drug B	Drug A is no better than drug B	
Conclusion drawn from a clinical trial	Drug A is better than drug B	$\frac{TP}{(1 - \beta = power)}$	Type I error (risk of making this error = \[\alpha = \text{the P value!} \]	
	Drug A is no better than drug B	Type II error (risk of making this error = β)	Correct	

Patient status at entry	Adverse event rates		Relative risk reduction RRR
	Placebo P	Active A	$\frac{(P-A)}{P} = RRR$

	Adverse events			Absolute risk reduction ARR
Patient status at entry	Placebo P	Active A	RRR	P - A = ARR
Prior target organ damage	.22	.08	64%	.2208 = .14
No prior organ damage	.10	.04	60%	.100406

Adverse events				Number needed to treat NNT	
Placebo P	Active A	RRR	ARR	$\frac{1}{ARR} = NNT$	

Likelihood of Being Helped or Harmed

LHH = NNH/NNT

A high LHH and low NNT is desirable in making a treatment choice. It has been suggested that an LHH of > 1 may help determine use of a treatment.

Effect Size

Effect size is a direct measure of how strong (or weak) the effect of a given treatment is on outcome. It numerically compares the two groups under study.

Effect size of 0 - 0.3 shows little to no effect;

Effect size of 0.3 to 0.5 shows small effect;

Effect size of 0.5 - 0.8 shows moderate effect;

Effect size = > 0.8 shows strong effect.

Bibliography

Evidence Based Medicine How to Practice and Teach EBM 3rd edition Straus SE, Richardson W S, Glasziou P, Haynes RB Elsevier press 2005

Clinical Epidemiology A Basic Science for Clinical Medicine 2nd edition Sackett DL, Haynes RB, Guyatt GH, Tugwell P Little, Brown and Company 1991

Clinical Epidemiology The Essentials 4th edition Fletcher RW, Fletcher SW Lippincott Williams Wilkins 2005

<u>Interpreting the Medical Literature 5th edition</u> Gehlbach SH McGraw Hill 2006